МЕТА-АНАЛИЗ КАК ИНСТРУМЕНТ ДОКАЗАТЕЛЬНОЙ МЕДИЦИНЫ

19 Jan 2012

Достаточно часто результаты исследований, в которых оценивается эффективность одного и того же лечебного или профилактического вмешательства или диагностического метода при одном и том же заболевании, различаются. В связи с этим возникает необходимость относительной оценки результатов разных исследований и интеграции их результатов с целью получения обобщающего вывода.К одной из самых популярных и быстро развивающихся методик системной интеграции результатов отдельных научных исследований сегодня относится методика мета-анализа.

Мета-анализ – это количественный анализ объединенных результатов эколого-эпидемиологических исследований по оценке воздействия одного и того же фактора окружающей среды. Он предусматривает количественную оценку степени согласованности или расхождения результатов, полученных в разных исследованиях.


Введение

В соответствии с концепцией доказательной медицины научно обоснованными признаются результаты лишь тех клинических исследований, которые проведены на основе принципов клинической эпидемиологии, позволяющих свести к минимуму как систематические ошибки, так и случайные ошибки (с помощью корректного статистического анализа полученных в исследовании данных) [2].

Международная эпидемиологическая ассоциация характеризует такой род исследования, как методику «объединения результатов различных научных трудов, складывающихся из качественного компонента (например, использование таких заранее определенных критериев включения в анализ, как полнота данных, отсутствие явных недостатков в организации исследования и т.д.) и количественного компонента (статистическая обработка имеющихся данных)» – методика мета-анализа [3].

Первый в науке мета-анализ был проведен Карлом Пирсоном (Karl Pearson) в 1904 году. Собрав вместе исследования он решил побороть проблему уменьшения мощности исследования в малых выборках. Анализируя результаты этих исследований, он получил, что мета-анализ может помочь получить более точные данные исследований [4].

Несмотря на то, что мета-анализ сейчас повсеместно применяется в области эпидемиологии и в медицинских исследованиях. Работы, в которых применялся мета-анализ не выходили свет до 1955 года. В 1970-х годов, более сложные аналитические методы были внедрены в учебных исследованиях, работами Гласса, Шмидта и Хантера (Gene V. Glass, Frank L. Schmidt and John E. Hunter [5].

Оксфордский Словарь Английского языка дает нам понять, что первое применения этого термина произошло в 1976 году Глассом. Основа этого метода была развита такими учеными как: Ражду, Хеджес, Купер, Олкин, Хантер, Коен, Чалмерс и Шмидт (Nambury S. Raju, Larry V. Hedges, Harris Cooper, Ingram Olkin, John E. Hunter, Jacob Cohen, Thomas C. Chalmers, and Frank L. Schmidt) [6].

 

Мета-анализ: количественный подход к исследованию

Цель мета-анализа — выявление, изучение и объяснение различий (вследствие наличия статистической неоднородности, или гетерогенности) в результатах исследований [7].

К несомненным преимуществам мета-анализа относятся возможность увеличения статистической мощности исследования, а, следовательно, точности оценки эффекта анализируемого вмешательства. Это позволяет более точно, чем при анализе каждого отдельно взятого небольшого клинического исследования, определить категории больных, для которых применимы полученные результаты [8].

Правильно выполненный мета-анализ предполагает проверку научной гипотезы, подробное и четкое изложение применявшихся при мета-анализe статистических методов, достаточно подробное изложение и обсуждение результатов анализа, а также вытекающих из него выводов. Подобный подход обеспечивает уменьшение вероятности случайных и систематических ошибок, позволяет говорить об объективности получаемых результатов [9].

 

Подходы к выполнению мета-анализа

Существуют два основных подхода к выполнению мета-анализа.

Первый из них заключается в статистическом повторном анализе отдельных исследований путем сбора первичных данных о включенных в оригинальные исследования наблюдениях. Очевидно, что проведение данной операции далеко не всегда возможно.

Второй (и основной) подход заключается в обобщении опубликованных результатов исследований, посвященных одной проблеме. Такой мета-анализ выполняется обычно в несколько этапов, среди которых важнейшими являются:

·        выработка критериев включения оригинальных исследований в мета-анализ

·        оценка гетерогенности (статистической неоднородности) результатов оригинальных исследований

·        проведение собственно мета-анализа (получение обобщенной оценки величины эффекта)

·        анализ чувствительности выводов

Необходимо отметить, что этап определения круга включаемых в мета-анализ исследований часто становится источником систематических ошибок мета-анализа. Качество мета-анализа существенно зависит от качества включенных в него исходных исследований и статей [10].

К основным проблемам при включении исследований в мета-анализ относятся такие, как различия исследований по критериям включения и исключения, структуре исследования, контролю качества.

Существует также смещение, связанное с преимущественным опубликованием положительных результатов исследования (исследования, в которых получены статистически значимые результаты, чаще публикуются, чем те, в которых такие результаты не получены).

Поскольку мета-анализ основан главным образом на опубликованных данных, следует обращать особое внимание на недостаточную репрезентативность отрицательных результатов в литературе. Включение в мета-анализ неопубликованных результатов также представляет значительную проблему, так как их качество неизвестно в связи с тем, что они не проходили рецензирование [11].

Основные методы

Выбор метода анализа определяется типом анализируемых данных (бинарные или непрерывные) и типом модели (фиксированных эффектов, случайных эффектов).

Бинарные данные обычно анализируются путем вычисления отношения шансов (ОШ), относительного риска (ОР) или разности рисков в сопоставляемых выборках. Все перечисленные показатели характеризуют эффект вмешательств. Представление бинарных данных в виде ОШ удобно использовать при статистическом анализе, но этот показатель достаточно трудно интерпретировать клинически. Непрерывными данными обычно являются диапазоны значений изучаемых признаков или нестандартизованная разница взвешенных средних в группах сравнения, если исходы оценивались во всех исследованиях одинаковым образом. Если же исходы оценивались по-разному (например, по разным шкалам), то используется стандартизованная разница средних (так называемая величина эффекта) в сравниваемых группах [12].

Одним из первых этапов мета-анализа является оценка гетерогенности (статистической неоднородности) результатов эффекта вмешательства в разных исследованиях [13].

Для оценки гетерогенности часто используют критерии χ2 с нулевой гипотезой о равном эффекте во всех исследованиях и с уровнем значимости 0,1 для повышения статистической мощности (чувствительности) теста [14].

Источниками гетерогенности результатов разных исследований принято считать дисперсию внутри исследований (обусловленную случайными отклонениями результатов разных исследовании от единого истинного фиксированного значения эффекта), а также дисперсию между исследованиями (обусловленную различиями между изучаемыми выборками по характеристикам больных, заболеваний, вмешательств, приводящими к несколько разным значениям эффекта — случайными эффектами).

Если предполагается, что дисперсия между исследованиями близка к нулю, то каждому из исследований приписывается вес, величина которого обратно пропорциональна дисперсии результата данного исследования.

Дисперсия внутри исследований в свою очередь определяется как

где μ— среднее внутри исследований [15].При нулевой дисперсии между исследованиями можно использовать модель фиксированных (постоянных) эффектов. В этом случае предполагается, что изучаемое вмешательство во всех исследованиях имеет одну и ту же эффективность, а выявляемые различия между исследованиями обусловлены только дисперсией внутри исследований. В этой модели пользуются методом Мантела-Ханзела.

 

Метод Мантела-Ханзела

В таблице представлены пропорции пациентов в Нью-Йорке и в Лондоне, которым был поставлен диагноз шизофрения.

— взвешенное среднее отдельных отношений шансов по группам. Критерий хи-квадрат Мантела-Ханзела проверки значимости общей меры связи основан на взвешенном среднем g разностей между пропорциями.

 

Статистика хи-квадрат Мантела-Ханзела задается выражением

с 1 степенью свободы.

Для того, чтобы статистика имела распределение хи-квадрат с 1 степенью свободы, каждая из четырех сумм ожидаемых частот

должна отличаться не менее чем на 5 как от своего минимума, так и от своего максимума.

Значит, чтобы с уверенностью пользоваться для статистики распределением хи-квадрат с 1 степенью свободы, вовсе не обязательно иметь большие маргинальные частоты. Число наблюдений в таблице может быть даже равно двум, как в случае связанных пар. Единственное, что нужно при этом – достаточно большое число таблиц, чтобы каждая сумма ожидаемых частот была велика.

 

Другие подходы к выполнению мета-анализа

Модель случайных эффектов предполагает, что эффективность изучаемого вмешательства в разных исследованиях может быть разной.

Данная модель учитывает дисперсию не только внутри одного исследования, но и между разными исследованиями. В этом случае суммируются дисперсии внутри исследований и дисперсия между исследованиями. Целью мета-анализа непрерывных данных обычно является представление точечных и интервальных (95% ДИ) оценок обобщенного эффекта вмешательства [17].

Существует также ряд других подходов к выполнению мета-анализа: байесовский мета-анализ, кумулятивный мета-анализ, многофакторный мета-анализ, мета-анализ выживаемости.

Байесовский мета-анализ позволяет рассчитать априорные вероятности эффективности вмешательства с учетом косвенных данных. Такой подход особенно эффективен при малом числе анализируемых исследований. Он обеспечивает более точную оценку эффективности вмешательства в модели случайных эффектов за счет объяснения дисперсии между разными исследованиями [18].

Кумулятивный мета-анализ — частный случай байесовского мета-анализа — пошаговая процедура включения результатов исследований в мета-анализ по одному в соответствии с каким-либо принципом (в хронологической последовательности, по мере убывания методологического качества исследования и т.д.). Он позволяет рассчитывать априорные и апостериорные вероятности в итерационном режиме по мере включения исследований в анализ [19].

Регрессионный мета-анализ (логистическая регрессия, регрессия взвешенных наименьших квадратов, модель Кокса и др.) используется при существенной гетерогенности результатов исследований. Он позволяет учесть влияние нескольких характеристик исследования (например, размера выборки, дозы препарата, способа его введения, характеристик больных и др.) на результаты испытаний вмешательства. Результаты регрессионного мета-анализа обычно представляют в виде коэффициента наклона с указанием ДИ [20].

Следует заметить, что мета-анализ может выполняться для обобщения результатов не только контролируемых испытаний медицинских вмешательств, но и когортных исследований (например, исследований факторов риска). Однако при этом следует учитывать высокую вероятность возникновения систематических ошибок [21].

Особый вид мета-анализа — обобщение оценок информативности диагностических методов, полученных в разных исследованиях. Цель такого мета-анализа — построение характеристической кривой взаимной зависимости чувствительности и специфичности тестов (ROC-кривой) с использованием взвешенной линейной регрессии [22].

Устойчивость. После получения обобщенной оценки величины эффекта возникает необходимость определить ее устойчивость. Для этого выполняется так называемый анализ чувствительности [23].

В зависимости от конкретной ситуации его можно проводить на основе нескольких различных методов, например:

·        Включение и исключение из мета-анализа исследований, выполненных на низком методологическом уровне

·        Изменение параметров данных, отбираемых из каждого анализируемого исследования, например, если в каких-либо исследованиях сообщается о клинических исходах в первые 2 нед. заболевания, а в других исследованиях — о клинических исходах в первые 3—4 нед. заболевания, то допустимо сравнение клинических исходов не только для каждого из этих периодов наблюдения, но и для суммарного периода наблюдения длительностью до 4 нед.

·        Исключение из мета-анализа наиболее крупных исследований. Если величина эффекта того или иного анализируемого вмешательства при анализе чувствительности существенно не изменяется, то имеются основания полагать, что выводы первичного мета-анализа достаточно обоснованы.

Для качественной оценки наличия такой систематической ошибки мета-анализа обычно прибегают к построению воронкообразной диаграммы рассеяния результатов отдельных исследований в координатах (величина эффекта, размер выборки). При полном выявлении исследований эта диаграмма должна быть симметричной. Вместе с тем существуют и формальные методы оценки существующей асимметрии [24].

Результаты мета-анализа обычно представляются графически (точечные и интервальные оценки величин эффектов каждого из включенных в мета-анализ исследований; пример на рис.1) и в виде таблиц с соответствующими статистиками.

Рис.1 Представление результатов мета-анализа

 

Заключение

В настоящее время мета-анализ представляет собой динамическую, многоаспектную систему методов, позволяющую теоретически и методологически убедительным способом объединять в одно целое данные различных научных исследований.

Мета-анализ по сравнению с первичным исследованием, требует относительно мало ресурсов, что позволяет не участвующим в исследованиях врачам, получить клинически доказанную информацию.

Главным условием использования мета-анализа является доступность необходимой информации о статистических критериях, используемых в обозреваемых исследованиях. Без сообщения в публикациях точных значений необходимой информации, перспективы применения мета-анализа будут весьма ограниченными. С увеличением доступности такой информации будет продолжаться реальное расширение мета-аналитических исследований и совершенствование его методологии.

Таким образом, тщательно выполненный мета-анализ может выявить области, требующие дальнейших исследований.

 

Список использованной литературы:

 

  1. Флетчер Р., Флетчер С., Вагнер Э. Клиническая эпидемиология.- М.: МедиаСфера, 1998.- 350с.
  2. Chalmers TC, Lau J. Meta-analytic stimulus for changes in clinical trials. Stat Methods Med Res.1993;2:161-172.
  3. Greenland S. Quantitative methods in the review of epidemiologic literature. Epidemiol Rev. 1987;9:1-30.
  4. Stephen B. Thacker, MD, MSc. Meta-analysis. A Quantitative Approach to Research Integration. JAMA. 1988;259(11):1685-1689.
  5. Peipert JF, Phipps MG. Observational studies. Clin Obstet Gynecol. 1998;41:235-244.
  6. Petitti D. Meta-Analysis, Decision Analysis, and Cost Effectiveness Analysis. New York, NY: Oxford University Press; 1994.
  7. Sipe TA, Curlette WL. A meta-synthesis of factors related to educational chievement. Int J Educ Res.1997;25:583-598.
  8. Shapiro S. Meta-analysis/shmeta-analysis. Am J Epidemiol. 1994;140:771-778.
  9. Schmidt LM, Gotzsche PC. Of mites and men: reference bias in narrative review articles: a systematic review. J Fam Pract. 2005;54(4):334–338.
  10. Lu G, Ades AE. Combination of direct and indirect evidence in mixed treatment comparisons. Statist Med 2004;23:3105-24.
  11. Lumley T. Network meta-analysis for indirect treatment comparisons. Statist Med 2002;21:2313-24.
  12. Hedges LK, Olkin I. Statistical Methods for Meta-Analysis. San Diego, CA: Academic Press; 1986.
  13. Berry SM. Understanding and testing for heterogeneity across 2×2 tables: application to meta-analysis. Statist Med 1998;17:2353-69.
  14. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–5.
  15. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–560.
  16. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22(4):719–748.
  17. Cochran WG. The combination of estimates from different experiments. Biometrics. 1954;10(1):101–129.
  18. Efron B. Empirical Bayes methods for combining likelihoods. JASA 1996;91:538-50.
  19. Morris CN. Parametric empirical Bayes inference: theory and applications. JASA 1983;78:47-55.
  20. Thompson SG, Higgins JP. How should meta-regression analyses be undertaken and interpreted? Stat Med. 2002;21(11):1559–1573.
  21. Schlesselman JJ. Risk of endometrial cancer in relation to use of combined oral contraceptives. Hum Reprod. 1997;12:1851-1863.
  22. Флейс Дж. Статистические методы для изучения таблиц долей и пропорций, Финансы и статистика, 1989.
  23. Schlesselman JJ. Risk of endometrial cancer in relation to use of combined oral contraceptives. Hum Reprod. 1997;12:1851-1863.
  24. Hopewell S, McDonald S, Clarke M, Egger M. Grey literature in meta-analyses of randomized trials of health care interventions. Cochrane Database Syst Rev. 2007.

 

Талдау мете бұл дәлел дәрігерліктің аспабы

Турдалиева Б.С., Рахматуллаева Н.У., Тен В.Б., Раушанова А.М.,

Мусаева Б.А., Омарова Д.Б.

Асфендияров С.Ж. атындағы ҚазҰМУ

Дәлелді медицина орталығы

Алматы, Казахстан

 

Түійн Бiр ауру бойынша бағаланған зерттеу нәтижелері ылғи бiр емдiк, алдын алу немесе диагностикалық әдiстiң тиiмдiлiгi жиi жеткiлiктi өзгешеленедi.

Әртүрлi зерттеулердiң нәтижелерiнiң салыстырмалы бағасы және олардың жалпылауыш қорытындының нәтижелерi осыған байланысты пайда болатын қажеттiлiк кiрiгуiн мақсаты.

Ең әйгiлi және жеке ғылыми зерттеулердiң нәтижелерiнiң жүйелiк кiрiгуiнiң жылдам дамитын әдiстемелерiнiң бiрiне бүгiн мета — талдау әдiстеме жатады.

Мета — талдау — бұл экологтiң эпидемиологиялық зерттеулер бiрiккен нәтижелерiнiң сандық талдауы — қоршаған ортаның ылғи бiр факторының әсерiнiң бағасы. Ол келiсушiлiктiң дәрежесi немесе әртүрлi зерттеу алған нәтижелердiң айырмашылығының сандық бағасын ескередi.

 

A meta-analysis as a tool for evidence-based medicine

Turdalieva B.S., Rakhmatullayeva N.U., Ten V.B., Raushanova A.M.,

Musaeva B.A., Omarova D.B.
KazNMU оf S.D.Asfendiyarov, Almaty, Kazakhstan
Abstract Quite often, the results of studies that evaluated the effectiveness of the same therapeutic or preventive intervention or a diagnostic method for the same disease are different.

In this regard, it is necessary to assess the relative results of different studies and the integration of their results in order to obtain general conclusions.

To one of the most popular and fastest growing methods of system integration of the results of individual scientific research today is the method of meta-analysis.

Meta-analysis – it’s a quantitative analysis of the combined results of ecological and epidemiological studies on the effects of the same environmental factor. It provides a quantitative assessment of the degree of consistency or discrepancies in the results obtained in different studies.


Турдалиева Б.С., Рахматуллаева Н.У., Тен В.Б., Раушанова А.М., Мусаева Б.А., Омарова Д.Б.

ЦДМ КазНМУ им.С.Д.Асфендиярова, Алматы, Казахстан

МЕТА-АНАЛИЗ КАК ИНСТРУМЕНТ ДОКАЗАТЕЛЬНОЙ МЕДИЦИНЫ

Новости

Все


Видео


Фото

Научно-практический медицинский журнал Вестник КазНМУ

Научные публикации, статьи, доклады, рефераты, диссертации, новости медицины, исследования в области фундаментальной и прикладной медицины, публикации журнала "Вестник КазНМУ" и газеты "Шипагер".


ISSN

ONLINE ISSN 2524 - 0692

PRINT ISSN 2524 - 0684


Полезные базы данных

Google Scholar Elibrary.ru Cyberleninka


О журнале

Описание журнала Редакция журнала СМИ о нас Рекомендуемые издания


Индексируется

Казахский Национальный Медицинский Университет имени С.Д. Асфендиярова

© 2021 КазНМУ