Valvular Heart Disease Aortic Stenosis

Aortic Stenosis

Etiology
Physical Examination
Assessing Severity
Natural History
Prognosis
Timing of Surgery

Common Clinical Scenarios

 Younger people

 Functional murmuazr vs MVP vs bicuspid AV

 Older people

 Aortic sclerosis vs aortic stenosis

Innocent Murmurs

- Common in asymptomatic adults
- Characterized by
 - Grade I II @ LSB
 - Systolic ejection pattern

- Normal intensity & splitting of second sou
- No other abnormal sounds or murmurs.
- No evidence of LVH, and no 1–with va

An 83 year old man with exertional dyspnea

- Previously well
- Gradual onset Class 2/4 dyspnea
- Occasional lightheadedness with exertion
- O/E: 2/6 ejection murmur

An 83 year old man with exertional dyspnea

- Is there significant valvular heart disease?
- Which valve?
- Is the valve playing a role in his dyspnea?
- How do you distinguish AV sclerosis from stenosis?
- What are the clinical signs of severe AS?
- What tests are appropriate?
- When is surgery indicated?

Aortic Stenosis: Symptoms

Cardinal Symptoms

- Chest pain (angina)
 - Reduced coronary flow reserve
 - Increased demand-high afterload
- Syncope/Dizziness (exertional pre-syncope)
 - Fixed cardiac output
 - Vasodepressor response
- Dyspnea on exertion & rest
- Impaired exercise tolerance
- Other signs of LV failure
 - Diastolic & systolic dysfunction

Common Murmurs and Timing (click on murmur to play)

S1

Aortic Stenosis: Physical Findings

Severe

Mild-Moderate

Aortic Stenosis: Physical Findings

- Intensity DOES NOT predict severity
- Presence of thrill DOES NOT predict severity
- "Diamond" shaped, harsh, systolic crescendodecrescendo
- Decreased, delay & prolongation of pulse amplitude
- Paradoxical S2
- S4 (with left ventricular hypertrophy)
- S3 (with left ventricular failure)

Recognizing Aortic Stenosis

Sign	Correlation	
	with Severity	
JVP-prominent A wave	No	
Carotid-delayed, anacrotic	Yes	
A2 audible over carotids	If A2 transmitted to carotids mean AV	
	gradient < 50 mm Hg and stenosis not severe	
Apex- sustained, atrial kick	Yes	
-enlarged, displaced	Yes	
Thrill	No	
Cardiomegaly- Clinical/CXR	Yes	
Soft S1	Yes	
Paradoxical S2	Yes	
S3, S4	Yes	
SEM- intensity	No	
- late peak	Yes	
ECG- LAE, LVH	Yes	

An 83 year old man with exertional dyspnea

Aortic Stenosis - Etiology

Young patient think congenital - Bicuspid 2% population 3:1 male:female distribution Co-existing coarctation 6% of patients

Rarely

- Unicuspid valve
- Sub-aortic stenosis
 - Discrete
 - Diffuse (Tunnel)
- Middle aged patient(4&5th decades) think bicuspid or rheumatic disease

 Old patient think degenerative (6,7,8th decades)

Aortic Stenosis: Etiology

Congenital bicuspid valve is the most common abnormality

Rheumatic heart disease and degeneration with calcification are found as well

Bicuspid Aortic Valve

Etiology of

Aortic Stenosis

Severity of Stenosis

Normal aortic valve area 2.5-3.5 cm² Mild stenosis 1.5-2.5 cm² Moderate stenosis 1.0-1.5 cm² Severe stenosis < 1.0 cm² Onset of symptoms $\sim 0.9 \text{ cm}^2$ with CAD ~ 0.7 cm² without CAD

Echocardiogram

- Etiology
 Valve gradient and area
 LVH
 Systolic LV function
 Diastolic LV function
 LA size
 Concomitant regional wall motion abnormalities
- Coarctation associated with bicuspid AV

Echocardiogram

	GAN	TERIOR	
	DW		LGC (DFF)
	L'IA		
LV		A0 AoV	
PW	MV	A	
	IVS LV	RV IVS PW MV	RV RV AO VS AO V V V V V

Figure 1: Principles of the Use of Doppler Ultrasonography and the Continuity Equation in Estimating Aortic-Valve Area. For blood flow $(A_1 \times V_1)$ to remain constant when it reaches a stenosis (A_2) , velocity must increase to V_2 . Doppler examination of the stenosis detects the increase in velocity, which can be used to calculate the aortic-valve gradient or to solve the continuity equation for A_2 . A denotes area, and V velocity

Aortic Stenosis: Prognosis

Symptom/Sign	Live expectancy	
Angina	5 years	
Syncope	2-3 years	
Congestive Heart Failure	1-2 years	

Therapy: Valve replacement for severe aortic sterios.

Operative mortality (elderly) ~ 4-24%/Morbidury ~ >-14%

Event rate in asymptomatic sever-

Natural History of Aortic Stenosis

- Heart failure reduces life expectancy to less than 2 years
- Angina and syncope reduce life expectancy between 2 and 5 years
 Rate of progression ↓

@ 0.1 cm2/year

Operative mortality of AVR in the elderly

- ~ 4-24%/year
- Risk factors for operative mortality
 - Functional class
 - Lack of sinus rhythm
 - HTN
 - Pre-existing LV dysfunction

- Aortic regurgitation
- Concomitant surgical procedures:CABG/MV surgery
- Previous bypass
- Emergency surgery
- CAD
- Female gender

Prosthetic Heart Valves

Types of Prosthetic Heart Valves

Mechanical

Caged-ball Starr-Edwards

Tilting-disc Single-tilting Medtronic-Hall Omniscience Bjork-Shiley Bileaflet-tilting St.Jude

Bioprosthetic

Heterograft (porcine or bovine) -Porcine aortic valve Carpentier-Edwards Hancock -Bovine pericardial Carpentier-Edwards -Stented valves (porcine) Carpentier-Edwards Hancock -Stentless valves (porcine) Toronto SPV Freestyle CryoLife-O-Brian Homograft Human cadaveric aortic valve

Caged-Ball Valve

Disc Valve

Bio-prosthetic Valve

Prosthetic Valves

MECHANICAL

- Durable
- Large orifice
- High thromboembolic potential
- Best in Left Side
- Chronic warfarin therapy

BIO-PROSTHETIC

- Not durable
- Smaller orifice/functional stenosis
- Low thromboembolic potential
- Consider in elderly
- Best in tricuspid position